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By application of a projection operator technique we derive a formally 
exact generalization of the nonlinear mean field master equation introduced 
recently for the study of local fluctuations in a reacting medium. Our 
starting point is a phenomenological cell master equation. The results of 
our theory are applicable to the theory of a fluctuating hydrodynamic 
reacting system. The mean field equation is placed on a firm theoretical 
foundation by showing it to be the lowest order approximation in an 
expansion in the dimensionality of the physical space keeping the product 
of the number of nearest neighbors (an increasing function of dimension- 
ality) and the typical diffusion coefficient constant. A more accurate 
nonlinear master equation that allows for the correlation and fluctuations 
in the environment of a given volume element is derived in the form of an 
augmented mean field equation. 

KEY W O R D S  : Master equations; fluctuations in chemical reactions; mean 
field theory; critical behavior; projection operators. 

1. I N T R O D U C T I O N  

Recently a non l inear  master equat ion has been used to study fluctuations in 
reacting diffusing systems. ~1,2~ The derivations presented there are heuristic, 

being based on the conjecture that  the env i ronment  of  a given subvolume of 

the system may be replaced by an averaged or mean  environment .  ~1,2~ It is the 
purpose of  the present  paper  to both  generalize this idea and  to put  these 

equat ions on a well-formulated theoretical basis as the lowest order approxi-  
mat ion  in a per tu rba t ion  theory. 
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The theory of projection operators developed by Zwanzig (8'4) has been 
used to study a variety of systems on the bas~s of rigorous statistical mechanics 
starting from a Hamiltonian and the Liouville equation. The projection 
operator formalism is devised to naturally separate the system into a sub- 
system of "interest" and the "remainder." Typically, if the part of interest 
interacts weakly with the remainder, then one may formulate a useful per- 
turbation scheme. Alternatively, other schemes involve breaking the Hamil- 
tonian into two parts (the free-particle kinetic part and the interparticle 
interaction, for example) and if one part is characterized by a smallness 
parameter (the case of weak interparticle potentials, say), then again a well- 
defined perturbation scheme arises in the projection operator theory. It is 
noteworthy that the projection operator formalism avoids the complexities 
of diagrammatic resummation techniques that arise in straightforward 
perturbation schemes in the smallness parameter. 

In the present paper we use a projection operator formalism to carry out 
the separation of the system into a small subvolume of interest and its environ- 
ment. We use the earlier work of Malek-Mansour and Nicolis (MN) (1) and 
Gardiner et  a/. (2) to guide our choice of a projection operator. In the work of 
MN the system is divided into a subvolume of "interest" AV and the re- 
mainder and it is conjectured that the joint probability of the composition in 
A V and its surroundings could be factorized. In the treatment of Ref. 2 the 
system is divided up into an array of N cells of relatively small dimensions and 
an N-cell probability function is introduced, giving the probability of the 
composition of each chemical species concentration in each cell. With this 
it is conjectured that the N-cell probability function may be approximated as 
a product of single-cell (i.e., reduced) concentration probability functions. 
The analogy with many-body theory would lead one to expect that each cell 
in this approximation would interact with an averaged environment. This is 
in fact the result of the calculations of Ref. 2. Thus the type of projection 
operator we introduce in order to map onto this mean field picture is one that 
projects the N-cell probability distribution onto the subspace of products of 
single-cell probability functions. With this we derive a generalized nonlinear 
master equation, which is an exact formal contraction of the phenomeno- 
logical multicell master equation. The equation is valid for general transport 
and local processes, including convection, thermal conduction, and local heat 
production. 

We turn next to the question of how the MN theory arises as an approxi- 
mation to our exact formal master equation. To determine this we first note 
the topological fact that as the dimensionality 3 of the space increases, the 
number of nearest neighbor cells n(3) of a given cell increases. For a cubic 
lattice of dimension 3 the number of nearest neighbors n(3) is 23. For more 
closely packed lattices n(3) is larger. As 3 ~ oo each cell experiences the effect 
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of  so many neighbors that one would expect the net result to be essentially 
that of an averaged environment. However, as 3 increases (with d, the cell-to- 
cell jump rate, held constant), the effect of diffusion eventually dominates the 
contribution of chemical reaction. Thus, to arrive at a theory that retains 
reaction and diffusion on an equal footing we expect that the MN mean field 
theory arises in the limit of infinite dimensions and vanishing jump rate with 
the product of  n(3) and d held constant in the limiting process. This is in fact 
found to be the case. Indeed, one might have expected this from the wealth 
of experience in equilibrium phase transitions, where mean field theories are 
found to be essentially exact in four or greater dimensions. For our problem 
we find that the corrections to mean field theory enter as the square of  the 
fluctuations in the environment and that the latter vanish as n(S)-I in the 
limit 8 ~ 0% n(~)d = const. 

The formal projection operator development is carried out in Section 2. 
A mean field expansion in the fluctuation of the environment from the mean 
is introduced in Section 3 and the relation of the scheme to the dimensionality 
expansion is shown explicitly for reaction-diffusion systems in Section 4. 
Conclusions and a discussion of further developments are given in Section 5. 

2. P R O J E C T I O N  O P E R A T O R  F O R M U L A T I O N  

We formulate our theory in terms of the cell description of Gardiner et 
al. ~2~ and use the projection operator formalism of Zwanzig. (3'4~ We wish to 
focus on a particular cell, denoted r, and in lowest order treat its environment 
in a mean field way. We know from earlier work that this intuitive picture is a 
consequence of the approximation of the N-cell probability distribution P( t )  
by a product of  single-cell reduced distributions. Let J~ be the operator that 
sums over all particle numbers ~/~ of species c~ = (1, 2 ..... s) in cell i = 
(1, 2,..., r -  1, r + 1,..., N), 

z =VIN  
For continuous variables like temperature or fluid velocity, (1) is appro- 
priately augmented. Then the reduced distribution Pr(~r, t) for cell r is given 
by 

g = g P  (2) 

With the Pr we form the product F, 

F = ~ P~ (3) 
i 

and to lowest order in our theory we wish to map onto this product function, 
i.e., 

P ,-~ F (4) 
E-*0  
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where e is a smallness parameter, which we shall relate to the dimensionality 
8 of the space at a later stage in the development. 

As it stands, ]r is not a projection operator, since the necessary property 
Jr 2 = ]r is not obeyed. However, if we introduce the operator Jr such that 

Jr(t) = [F(t)/Pr(t)]L (5) 

then we see that 
j 2  = j~ (6) 

and since Jr is a linear operator in the probability function space in which P 
is a member, it is indeed a projection operator. (8) We note that Jr depends on 
time, but the slight complications that this introduces over the usual time- 
independent projection operator formalism do not present major technical 
problems, but in fact are an essential part of our theory leading to nonlinear 
equations for the Pr. Indeed, the Pi are not initially known and hence Jr is not 
either. However, the resulting nonlinear equations resolve this ambiguity 
when expressed explicitly as equations for Pr, as we shall see. We now use 
this projection operator to derive a formal closed equation in the single-cell 
distribution function following the methods of Zwanzig. 

The master equation for the N-cell probability distribution may be 
formally written in the operator notation 

~P/~t = (O + R)P (7) 

where the effects of diffusion or other transport and reaction and other local 
processes are embodied in the D and R operators, respectively. For example, 
for an isothermal system at rest these operators may be written in terms of 
particle-number raising and lowering operators, as we shall see in Section 4. 

In accordance with the usual projection operator methodology we derive 
separate equations for JrP and (1 - Jr)P and combine them to get a closed 
equation for the single-cell product function F (=J rP)  or alternatively for Pr 
itself. Since Jr depends on t, there are some changes in the usual derivation, 
so we present it here. First we multiply (7) by Jr, 

J~(oe/ot) = Jr(D + R)(F + Q) (8) 
where 

Q - -  (1 - J r ) P = P -  F (9) 

The operator R is a "single-cell" operator since it can be written as a sum of 
terms Ri operating only on the variables of cell i. For example, for chemical 
reaction R~ has for each reaction a positive term that increases the number of 
products and decreases the number of reactants to the state of interest and an 
equivalent negative contribution that decreases the probability of the state of 
interest. Then the sum over all species numbers ~b~ ~ of species of type (z in cell 
i of R~A yields zero. Hence 

JrRA = RrJrA (lO) 
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where A is an arbitrary function, Rr denotes the reaction (local process) 
operator for cell r, and 

R = ~ Rr (11) 
T 

Noting that 

and that 

we obtain 

J~RQ = R~JrQ = R~J~(1 - J~)P = 0 

Jr aP /at = (F/PO aPr/Ot 

(12) 

(13) 

OP~/~t = ((D)~ + R~)Pr + L D Q  (14) 

where the "mean field transport operator" (D)~ for cell r is defined by 

(D)~ = JrD(F/Pr) (15) 

Note that if we neglect the excess correlation Q in (14), then we obtain a 
generalized nonlinear master equation analogous to the mean field results 
derived earlier in Refs. 1 and 2. 

The next part of the calculation is to derive an equation for Q, solve it 
formally, and put the result in (14) to get a closed equation for the P~. 
Multiplying (7) by 1 - J~ and rearranging terms in analogy to the first part of 
the derivation, we obtain 

~Q/Ot = L Q  + (1 - JO(D + R - O/Ot)F (16) 

where 

L( t )  =- (1 - Jr)(D + 8) (17) 

To solve the equation for Q we introduce an evolution operator ~ such that 

~Jf/Ot = L ( t ) Y f  (18) 

J.((0) = I (19) 

where I is the identity operator. One obtains 

Q(t) = Yl( t )Q(O) + dr' K(t ,  t')[1 - J~(t')](D + R - ~/Ot)F (20) 

We have introduced the notation Jg'(t)[Jl(t ')]-1 = K(t,  t'). 
At this point we assume that the cells are initially uncorrelated and hence 

Q(0) = 0 (21) 

Although not strictly required for our further developments, this assumption 
leads to simplified equations and for many physical situations (i.e., rapid 
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stirring of the solution for t < 0 and then stopping the fluid motion at t --- 0 
and following the isothermal reacting fluid at rest) this is probably a reason- 
able assumption. Putting (20) and (21) into (14), we obtain 

aP~/at = ((D)r  + R~)P~ 

+ ]~D dt' K(t, t')[1 - Jr(t')](D + R - O/~t)F (22) 

Since F is a product of Pi's and Jr and 5(( may be expressed in terms of the 
latter, we see that (22) is the desired closed formal equation for the single-cell 
probability distribution function Pr, r = 1, 2 ..... N. This equation shall serve 
as the basis of our analysis, 

3. M E A N  FIELD P E R T U R B A T I O N  T H E O R Y  

3.1. Formulat ion of the  Theory  

In this section we introduce a formal expansion procedure which allows 
for an orderly correction scheme to the mean field equation. The generalized 
mean field equation in our present notation is obtained by neglecting the 
excess correlation term Q in (14). Denoting this approximation by a super- 
script (0), we obtain 

~P~~ = ((D)~ ~ + Rr)P~ ~ (23) 

Alternatively, from its definition (3) the factor function F obeys the equation 

~F(~ = ( (D)  (~ + R)F (~ (24) 

where 

( D )  --- ~ (D) r  (25) 
I" 

Comparison of (24) with the full equation (7) for the exact N-cell probability 
distribution P suggests rewriting the latter in the form 

OP/~t = ( (D)  + R + cA)p (26) 

where the "per turba t ion"  cA is defined by 

cA =_ D - ( D )  (27) 

The formal smallness parameter c is introduced for the purpose of conven- 
iently ordering the perturbation theory. At the end of a calculation one sets 
c = 1 and presumably the natural system smallness parameter will have 
manifested itself. In Section 4 we show that this is related to the dimension- 
ality of the space. 
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Let us investigate this scheme via the formal  single-cell equat ion (22). 
To  start  the procedure  we introduce expansions in terms o f  E; for example,  

Pr = ~ Pr (28) 
r t = 0  

Since ( D ) r  (and hence ( D ) )  is a functional  ofP~ (i = 1, 2 ..... N) ,  we must  also 
calculate the contr ibut ions to ( D ) r  to var ious orders. We write 

( D ) r  = Z (D)(~">c ~ (29) 
/Z=0 

The (D)~ ~) are related to the PSi) th rough  the functional  derivatives of  ( D ) r  
with respect  to P~ evaluated at p~o). We now show that  the kernel term in (22) 
brings in correct ions to order  ,2 only, a result c o m m o n l y  found in the 
project ion ope ra to r  formulat ion.  

F r o m  (24) we note that  to lowest order  

(1 - Jr) (O + R - ~ /Ot)F ~ ~(1 - Jr(~ ~~ + (D) (1 ) )F  ~~ 

+ ( ( D )  (~ + R - ~ /~ t ) F  (~)] 

= e(1 - Jr(~176 (~ (30) 

We shall show that  the first nonvanishing contr ibut ion f rom the F (~ term in 
(30) actually arises in order  e 2 and ( D )  (~) and F (~) terms will be d ropped  since 
p(1) vanishes, i.e., P, - p(o) ~ O(e2) as e -+  0. 

3.2. Proper t ies  of  K (~ 

We now derive some propert ies  o f  K (~ useful for  our  later calculations. 
First we note that  K obeys the same equat ion as 9~, i.e., (18), with initial 
condi t ion K( t ' ,  t ' )  = L Thus,  mult iplying this equat ion by art, we obtain the 
following equat ion for  arrK(~ 

~ K ~ ~  = L(1 - J(r~ (~ + R ) K  (~ (31) 

It is easy to show f rom the definitions of  Jr and Jr(t) ,  (1) and (5), that  

L(1 - -  Jr) = 0 (32) 

Hence i r K  (~ is a constant  and f rom its value Jr at t = t '  [i.e., K(~ ', t ' )  = I]  
we have 

a~K (~ = Z (33) 

With this result we can determine other  propert ies  of  K ~~ F r o m  its definition 
K ~~ obeys the equat ion 

eK(~ = (1 - J}~176176 (34) 

L (~ = ( D )  (~ + R (35) 
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Since L (~ is a single-cell operator 

J(~~176176 = ((D)(~ ~ + Rr)J(~~ (~ (36) 

Thus, using (33), we obtain 

8K(~ (t, t ') = L(~176 t ')  - ({D)(t)(fl) + R~)J(~~ (37) 

where we have explicitly displayed the time dependence of all operators. 
From (22) it is clear that the quantity K(t ,  t')[1 - J,(t')] is of great importance 
in evaluating the kernel term. Multiplying both sides of (37) into [1 - J~(~ 
we obtain 

8B(t,  t ' ) /~t  = L(~ 

B(t,  t') =- K(~ t ' ) [1  - J~(~ (38 )  

where we have used (32) to show that the contribution to B from the second 
term in (37) is zero. From the initial data 

B(t ' ,  t ') = 1 - J(~~ (39) 

and since L (~ is a sum of single-cell operators, one may verify that B is 
given by 

N 

B(t,  t ') = ~ k,(~b,; t, t')[1 - J~(~ (40) 
~ = 1  

8k,/Ot = ( (D)}  ~ + R,)k , ,  k,(~b,; t', t') = 1 (41) 

The results (33) and (40) will now be used to aid in the study of the structure 
of the mean field expansion. 

3.3. Evaluat ion of  the Correct ions to the  Mean  Field Theory  

Writing D = ( D )  + cA, the lowest order contribution from the kernel 
term takes the form (neglecting the F (1) and ( D )  (1) terms) 

f2 J ~ ( D )  (~ dt' B(t ,  t')A(~176 (42) 

Since ( D )  is a single-cell operator, ar~(D) = (D)rJr ,  and using (32) and (33), 
one finds that (34) vanishes. Thus from (22) and (27) we see that to lowest 
order the kernel term takes the form 

f2 ~2ZA(~ dt'  B(t ,  t')A(~176 ') (43) 
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and contributes only to order e2. Since the corrections to the mean field 
theory (23) are thus found to arise in order e 2, we note that the dropping of  
the ( D )  (~) and F m terms done earlier is justified. 

Using the result (43), we may write an equation for P~ which is valid to 
terms of order E 2. Dropping the superscript (0), we obtain an ~ 
mean field approximat ion"  as follows: 

8P~/St = ( (D)r  + Rr)P r + e2]~A(t) dr' B(t, t ' )A(t ' )F(t ' )  (44) 

Since JT and K (~ involve PT, this equation is a highly nonlinear integro- 
differential equation. Its solution agrees with those of  the formal exact 
equation (22) to order e2. We now turn to the important  task of relating the 
formal parameter  e to the natural smallness parameter  for the system. 

4, RELATION OF THE M E A N  FIELD E X P A N S I O N  TO 
THE D I M E N S I O N  OF THE SPACE 

We now show that the formal expansion parameter  e may be related to 
the dimensionality of  the space. We focus on the case of  isothermal reaction 
and diffusion in a convection-free system. For  this case we may write 

D = ~ Dis (45) 

Cr + - -  D,j = ~ d~j(a,~ajr - 1)r ~ (46) 
c~ 

a~ = exp(+ 8/86, ~) (47) 

Here r is the concentration of species a in cell i and d~ is the diffusion jump 
transition rate for the molecule of  species a to jump from cell i to cell j.(2) 
Note that a~ and a s  are particle-number raising and lowering operators. 
Similarly, we can write the reaction term R in the form 

R = ~ & (48) 

where R~ is a function of  ag  and a~.  As noted earlier, R is a single-cell 
operator since it may be written as a sum of  terms R, each of which only 
operates on one cell. In contrast to this, D is a two-cell operator, since we 
have written it as a sum of  terms each of  which involves simultaneous 
operations on two cells. In general d~ will fall off rapidly as the distance 
between cell i and j increases and for simplicity we assume that d~ is nonzero 
only if i and j are nearest neighbors. 
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4.1. Recovering the Mean Field Equation 

In  Section 3 we have stated that  in the limit as E -+  0, (43) reduces to the 
general izat ion of  the mean  field equat ion o f  Refs. 1 and 2. For  the case of  
react ion and  diffusion considered in (45)-(48) one obtains f rom (15) that  

( D ) r  = ~ ~ [dg(~b~)(ar, - 1) + dr~(ar + - l)~r c~] (49) 
a i : # r  

where 
(~b,"~ = ~ ~b,W,(~b,, t) (50) 

and ~b, -- col{~b, ~, ~b~ 2 ..... ~b, ~) for  a system of  s species, ~ = 1, 2,..., s. Insert ing 
(49) to zeroth  order  into (23), we obtain  the mean  field equat ion as a special 
case of  the generalized nonl inear  master  equat ion  (23). 

4.2. Calculation of the First Correction 

Let us now use (36) and  (37) to calculate the first correct ion te rm to the 
mean  field theory.  For  simplicity we limit our  derivat ion to the case of  a 
homogeneous  ensemble,  a l though the more  general case appears  to hold no 
major  technical problems.  The  quant i ty  A, defined in (27) as the f luctuation 
f rom the mean  field t ranspor t  term, may  be writ ten 

A = ~ d ~ ~ (a~b,  ~ - (~b~))(a~ - 1) (51) 

(nn) 

Since we have taken  nearest  ne ighbor  diffusion only, we write 

.~d", i, j nearest  neighbors  (52) 
d# = ~ 0, i, j not  nearest  neighbors  

and the symbol  (nn) below the summat ion  indicates that  i and  j must  be 
nearest  neighbors.  

Because we are working  with a homogeneous  ensemble,  (~b~ ~) is inde- 
pendent  o f  i, and we have 

(~,~) = ~ ( t )  (53) 

With this the correct ion term, e2C may  be writ ten 

r t  ,~-, - ~ ( t ) ] ( a j ,  - t)B(t,  t ' )  
i : # j  l :#m cqB 

(nn) (nn) 

• (a~b~ B - 1 ) ( a , ; ~ -  1)F(t ' )  (54) 

Note  tha t  i f j  # r, then everything to the right of  the a ~  - 1 factor,  which 
we denote A( .... ~bT,...), makes  no contr ibut ion since 

(a~ - 1)A(..., ~b,",...) = ~ [A( .... ~bj" - 1,...) -- A( .... ~b,~,...)] (55) 
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which, neglecting the vanishing contribution A( .... oo,...), is zero. Thus we 
obtain 

J; i = n n ( r )  l m = n n ( 1 )  cr r g/l ~" 

x (a~ - 1)k,(t, tgk,(t,  t ')US~(t ')  (56) 

Udm(t') -- l - I  F I  ~ [1 - J,(t')] [a~b, B - ~bz(t')](ame - 1)F(~ ') (57) 

We have used (40) and (41). Note that the Jr term in U vanishes since it 
contributes only if l = rn = r, but l r  Also, if m r i or r, then the 
operator U ~  must vanish and similarly if 1 r i or r. Thus since l r m we 
have in the expression for C 

giZlrn--> giZir~li~mr -b U~/ ~tr3rn/ (58) 

With this we obtain 

C = dt' d~d B ~ [ai+~r ~ - ~"(t)] 
~0 i = n n ( r )  ~z,fl ~, ~ r  

x ( a ~ -  1)kr(t , t')k{(t, t ' ) [Ui ir ( t ' ) -  Uiri(t')] (59) 

Note that in C we have two factors of  diffusion coefficients and only one sum 
over nearest neighbors. Thus, letting n(3) be the number of nearest neighbors 
and d be a characteristic diffusion coefficient, we have 

C = O[n(b)d ~] = O[n(3) -~] (60) 

in our mean field limit, where n(,3)dis kept constant. As our physical intuition 
dictated, the corrections to the mean field theory vanish as the number of  
nearest neighbors increases and the interaction per neighbor decreases. 

As a technical point we note that kr is not an unknown functional of  P 
but is the solution of (32) involving the zeroth-order value of Pr determined 
from mean field theory (23) only. 

It is clear that the result of this section generalizes appropriately to 
inhomogeneous systems and furthermore to systems with flow or energy 
transport and production. We thus conclude that the earlier mean field theory 
and our generalized nonlinear master equation (23) is probably a fairly good 
approximation for three-dimensional systems but may not be particularly 
good for one- and two-dimensional systems. These systems of  lower dimen- 
sionality should be more reasonably handled by the augmented mean field 
theory (36) and (37). In addition, the augmented theory is an improvement 
for three dimensions since it allows for fluctuations in the environment. 



330 M. DelleDonne and P. Ortoleva 

5. C O N C L U S I O N S  

The generalization of the nonlinear master equation and introduction of 
our perturbation scheme should be of great value in studying fluctuations in 
hydrodynamic systems. In particular, for an isothermal reaction-diffusion 
system without center-of-mass flow we have shown explicitly in Section 4 that 
the corrections to the earlier mean field theories ~1,2~ decrease inversely with 
the number of nearest neighbors and hence with the dimensionality of the 
space. This suggests a new perturbation method using the number of nearest 
neighbors as the asymptotic expansion parameter. 

In Fig. 1 we show a parameter space plane of n(3) vs. d. Let us assume 
that we wish to study a three-dimensional system with a typical diffusion 
transition rate d*. Then to carry out the mean field dimensionality expansion 
we expand all functions with respect to [n(3)]- 1 via the mean field expansion 
along the curve n(3) = n(3)d*/d that passes through the point (d*, n(3)) of 
interest. Truncation of the theory to order [n(3)]- ~ leads to our augmented 
mean field nonlinear master equation (44). 

In a sequel study we shall present further results on the application of the 
mean field dimensionality expansion to the study of critical fluctuations (s~ and 
nucleation (6~ of chemical instabilities. We shall also develop these ideas for 
application to systems with flow or energy exchange and production. A 
heuristically derived mean field nonlinear master equation has recently been 
applied to hydrodynamic systems by other authors5 v~ 

! 

0 
0 cl ~ 

d 

Fig. 1. Parameter plane showing number of nearest neighbors n(3) (for a space of dimen- 
sion 3) vs. a typical diffusive transition rate parameter d. The mean field perturbation 
theory is an expansion with respect to [n(3)]-1 keeping the product n(3)d fixed at the 
value n(3)d* of interest, i.e., along the curve n(3) = n(3)d*/d shown for a three- 
dimensional system with diffusion transition rate d*. 
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Since submission of  this paper  it has been brought  to our  attention that a 
projection opera tor  closely related to the one used here has been introduced 
by Willis and Picard39~ The projection operator  used by these authors is 
symmetrized with respect to the reduced probabilities (P~ for our  problem). 
The symmetrized projection opera tor  leads to results similar to ours except 
that  the O/?t term in the correlat ion term is accounted for  by the presence o f  a 
different kernel term than the one arising in our  theory. Choice between the 
two projection operators seems to be a matter  o f  convenience, depending on 
the problem of  interest. They applied their formalism to an optical system and 
to the derivation o f  a Bol tzmann equation. 
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